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Information entropy of complex structures
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(Received 10 June 1997

The information entropy function provides a sensitive measure of the complexity of a multi-component
material system, where “complexity” refers to the range of length scales over which morphological features
are present. This is demonstrated for an evolving, two-phase microstructure simulated by a population of
interacting particles on a two-dimensional surface. The information entropy increases at all length scales as the
initially random configuration of particles evolves to produce a distribution of ramified clusters. Maxima in the
normalizedinformation entropy function, which is obtained by subtracting the information entropy of a per-
fectly random configuration from that of the clustered configuration, occur at length scales for which the
system most differs from a random configuration, while minima occur at length scales for which the system is
periodic or relatively ordered. Besides analysis of complex microstructures, information entropy is useful in
detecting features present in any collection of de$4.063-651X97)04811-3

PACS numbegps): 05.90+m, 02.50-r, 05.40+j

I. INTRODUCTION The information entropy is then calculated for a model
system consisting of interacting particles on a surface, to
The physical properties of materials are determined prishow that the functioid can uniquely characterize a system
marily by their microstructure. Quantitative characterizationover all length scales. The physical significance of the en-
of the microstructure is thus essential both to correlate mitropy function for this system is found by monitoring the
crostructure attributes with observed properties, and to prechanges irH as the system evolves. Maxima and minima in
dict properties through equations of motion, incorporatingthe normalizedH (obtained by subtracting the information
such attributes, that describe physical phenomena of interesttropy for the random particle configuratjcare shown to
[1]. In principle, a complete set @f-point spatial correlation correspond to clusterin@f particles and of particle clusters
functions can completely describe the microstruct{2¢  and to periodicity or ordering, respectively.
However, correlation functions beyomd=2 are difficult to

calculate in practice, even for a digitized image of t_he mi- Il INFORMATION ENTROPY
crostructure. It is thus important to formulate alternative sta-
tistical descriptions of complex materials. The application of information theor}f] to microstruc-

Beghdadi and co-workef8,4] introduced the concept of ture characterization is made by specifying that the informa-
“configurational entropy” as a morphological descriptor for tion content of a particular volume or area found in the state
heterogeneous materials. This entropy, adapted from Shan-is proportional to—log p;, wherep; is thea priori prob-
non’s information theory5], is a measure of the local fluc- ability of finding that volume or area in thih state(or
tuations of some material attribute such as phase volumeonfiguration. The states accessible to the system corre-
fraction, over the system. Bogeat al. [6] developed the spond to all possible values of a specified microscopic ma-
similar “local porosity entropy” to find the length scale* terial attribute, such as phase volume fraction or length of
that maximizes the geometrical contéagain, fluctuations interphase boundary per unit cross-section area. The func-
of a system, in order to obtain an optimal local porositytional dependence of information content on the state prob-
distribution useful for calculating physical properties of aability derives from the fact that a sampled volume or area
porous media. An exact relationship between these two erthat possesses an unusual value for a material attribute con-
tropies was recently established by Andraeidal. [7]. A veys more information about the microstructure than does a
more straightforward measure of phase volume fraction flucsample that possesses the average value for the attribute. The
tuations is given by the “coarsenes& introduced by Lu logarithmic function is necessary so that information content
and Torquatd8]. This quantity is proportional to the stan- is additive: the information contenit(p,p,) of a system
dard deviation of the local volume fraction, and is related tocomprised of two regions in states 1 and 2, respectively,
the two-point probability functiors,. must equal the suh(p;) +1(p,). The average value of the

The present work considers a more general “informationinformation content(averaged over all volumes or areas
entropy” H, so called because it corresponds to the averageomprising the systejnis then the information entropyt for
information content of the system. The distinctions betweerthe system, for the length scale given by the size of the
the information entropy and the configurational or local po-sampled volumes or areas.
rosity entropy are noted during the formulationtbfin Sec. The information entropy differs from the configurational-
I. local porosity entropy mainly in the assignment of the prob-

abilities p. For the latterp; is theactual probability of find-
ing a particular volume or area in the stateso that the
*Electronic address: cvs@inel.gov system is completely examined prior to making the assign-
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from the random particle distribution represented by the set

. [ 1 | - of probabilities{p}, that will occur as the system evolves,
provide increased information content. The average value of
the information content, taken over aiX m regions com-

% T prising the systeniwhich number [ —m-+1)?], is the en-
tropy H(m).
m o l . The set{p} for the finite, random system is comprised of

- elements
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f lesser ofN andm?. The information entropy for the finite,
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Ho(m)==2 p(m)log[p;(m)], 2
FIG. 1. Snapshot of a population of interacting particles that '
represents an evolving, two-phase microstructure. This 625- part'dﬁ/hlch is symmetric about its maximum Bt= L2/2, for all

configuration on a 5850 grid produces the normalized informa-
tion entropyH'(m) curve calculated at time=1000 in Fig. 4. ][n When_p_lotted against particle r_lumlj\ér _Slnce the Seﬁp_}

or the finite, random system with particle coverageis
identical to the set for the complementary system with par-
ticle coverage * ¢. The entropyH,(m) is also symmetric
about its maximum am2 L2/2, for all N, when plotted
pgainst sample box size’ [Eq. (1) is unchanged under the
replacementm?—N], and equals zero am=L since no
(new) information can be gained by sampling the system at

of the selected material attribute over the system, at thiat length scalépy=1 for m=L). In each case, the maxi-
length scale given by the size of the volume or area used tB1UM inH.(m) coincides with the maximum in the number
determine the set of probabilities. In contrast, the informa©f States accessible to the systene., the number of ele-
tion entropy is a measure of thieviationof the value(or ~ MeNts in{p} is maxima. _ , ,
distribution of values of a material attribute from an initial The information entropyd(m) for a given configuration
or expected valuéor distribution of values on the length  ©f particles is then

scale corresponding to the volume or area §i£48. A more

sensitive measure is thmrmalizgdinform_ation entropy_-| " H(m)=— 2 P;(m)log[ p;(m)], 3
where the initial or expected information entropy is sub- i

tracted from the information entropy calculated for the ma- ) ) )
terial system. wherep; is taken from Eq(1), andP; is the actual probabil-

ity of finding exactlyi particles inany mx m region sampled
from the system. The set of probabilitigR} for box sizem?
corresponds to the local porosity distributigé] when par-
ticle density is identified with porosity.

To demonstrate the sensitivity of the information entropy  Figure 2 shows the information entropy(m) for several
to microstructure inhomogeneityy(m) is calculated for a initial, “pseudorandom” configurations of 625 particleg (
simple two-dimensional, two-phase system, for all length= %) obtained by placing the particles, one at a time, at ran-
scalesm [11]. The system consists of a collectionfpar-  dom positions on a 5050 grid, together wittH,(m) for a
ticles (each of size K1) initially placed randomly on a perfectly random configuration calculated from E2). [12].
square grid of side length, that interact weakly to form an The deviation of the former curves from the latter reflects the
irregular distribution of ramified clusters as shown in Fig. 1.finite size of the system in two way&) the pseudorandom
The information content of anXm square region(or  particle configurations are themselves randomly chosen from
“box” ) within this system that is found to contam par- the set of all possible configurations of 625 particles on a
ticles is —log p,, wherep,, is the probability of finding ex- 50x50 grid, so thaP; cannot be expected to equalfor all
actly n particles in thamx m square region if th&l particles i; and (b) fewer mxXm boxes are sampled as the box size
were instead distributed perfectly randomly over the systemapproaches the system size, so that deviations are generally
Thus the system igresupposedi.e., prior to examinationto  largest at largen. Note that for this reason, the information
be in a random configuration, so that deviationsentropy may not be a useful descriptor for length scales near

ments.(Such prior knowledge provides “constraint§9] in-
corporated into the probabilities, so that the total informatio
content of the system is reducgdhe configurational-local
porosity entropy is thus sensitive tioictuationsin the value

IIl. APPLICATION TO AN EVOLVING TWO-PHASE
SYSTEM
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FIG. 2. Information entropyd (m) for several “pseudorandom” FIG. 4. Typical sequence dfi’(m) curves calculated for a

configurations of particles on a finite space. These curves deviatgopulation of interacting particles at timeés=0,100,200,...,1000.

from the correspondingd,(m), shown as a dashed curve, for a Nucleation and growth of small clusters are indicated by the in-

perfectly random configuration on that space. crease in height and shift in position of the first maximum at length
scalem~5 over this time period. Larger-scale features are indi-
cated by the maxima at larger box sizes. The particle configuration

that of the system sizéHowever, the problem of large de- &tt=1000 is shown in Fig. 1.
viations at box sizes approaching the system size may be

ameliorated by considering tHex L system to be infinitely
periodic rather than finite, so thatxX m boxes may effec-
tively “wrap around” the system edges.

The effects of nonrandom particle distributions are mor
obvious in the correspondingormalized information en-
tropy H'(m)=H(m)—H,(m) shown in Fig. 3. Values for
H’(m) greater(lesg than zero indicate length scales for
which particle clustering is morgess prevalent than occurs

for a perfectly random particle configuration on a finite _ ;
space. calculated for the particle population &t=0,100,200,

Ramified clusters are formed as the particles diffuse rans-1000. Cluster nucleation and growth is indicated by the
domly over the surface, due to a small binding energy belmmediate rise irH’(m) at smallm and the subsequent shift
tween adjacent particles. This is effected by reducing thd" the position of that first maximum to slightly larger.
probability, from one to one-fifth, that a particle will move to The additional maxima correspond to “clusters of clusters

an adjacent empty site when the particle has one or mor@résent at larger length scales, that are seen to arise from
nonrandom inhomogeneities in the initial distribution of par-

ticles. Consistent with this interpretation, Fig. 5 shows
curves forH'(m) calculated at=100 for several initially

neighborgthe binding energy is thus approximately 0.04 eV
awhen the system is considered to be at room tempepature
The timet associated with the evolution of this system is
expressed in Monte Carlo time steps, where one time step is
completed after every particle has had a single opportunity to
move to an adjacent site.

Figure 4 presents a typical sequencehHbf(m) curves
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FIG. 3. Difference betweeh (m) andH,(m) in Fig. 2, plotted Box Side Length m
as the normalized information entroply (m). The deviation of the
curves fromH’(m)=0 is due to the imperfectly random initial FIG. 5. Normalized information entropil’(m) curves plotted

placement of the particles. Values greater than zero occur at lengtt time t= 100, for several initially random configurations of par-
scalesm for which particle clustering is greater than occurs for aticles (those producing Figs. 2 and.3n every case, the first maxi-
perfectly random configuration, while values less than zero occur anum indicates small cluster formation, while the maxima at larger
length scales for which the particle distribution is more ordered orbox sizes indicate larger-scale features that arise from the imper-
regular than occurs for a perfectly random configuration. fectly random initial placement of the particles.
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FIG. 7. Normalized information entropi’(m) curves calcu-
lated for periodic configurations of particles. Each of the three con-
figurations has a 2010 unit cell within which is a single square
cluster of 2, 52, or 8 particles, respectively; the corresponding
curves have first maximél’(6)=0.14,H’(5)=1.39, andH'(5)
=1.01. All three curves have minima at length scales coincident
with the periodicity of the particle configurations.

FIG. 6. Normalized information entropi’(m) curves calcu-
lated for the particle population producing Fig. 4, at time0 and
later timest=10°,2x 1%,...,1¢. Except for the curve calculated
for the initial, random configuration @t 0, all curves correspond
to equilibrium configurations of particles. No correlations exist
among the set of curves; for example, the curve for wiicig39)
=12 is obtained at=7x 10°.

random particle configurationghose producing Figs. 2 and tion. Similar H'(m) curves are obtained for other particle
3) that have nearly identical first maxinfaorresponding to coverages and particle jump probabilitigsading to differ-
cluster formatiopand very different additional maxim@or-  ent cluster sizes and shapeand for other system sizes.
responding to larger-scale features

The extreme sensitivity of the information entropy to mi-
crostructure features at all length scales is evident in Fig. 6, IV. DISCUSSION
which presentsH’(m) curves calculated for the particle
population (producing Fig. 4 at t=10°2x10,...,10.
These wildly varying curves are producafter the system
has reached equilibrium, as indicated by an essentially co

stant ratio of successful particle jumps to attempted jump his has been demonstrated for a system of interacting par-

over each 10time interval.(As only free particles and par- ticles, whereH (m) increases as the initially random configu-
ticles at a cluster periphery can perform jumps, their popu- ’ y 9

tons must b stabe o produce aconstant jup fllas /=17 O arlcies evohes o produce compler sicues,
variability would be reduced at larger system siZesth PP ! y

same particle coveragg) as a greater variety of cluster con- ;%rqbigrmgi thgctseedt (ﬁtﬁgo?ogrg?ayltﬁ; g?}atgi[tgr?all at-
figurations could then coexist. : xp IStribut valu :

Despite the incontrovertible interpretation of the ﬁrsttribUte (for a_continuous distribution, the s{am.}_i.s replaced
maxima in Figs. 4 and 5 as indicative of small cluster for—by the functionp). A set of “’%”dom probabilities like that.
mation, it is incorrect to assume that the various maxima i sed above may be appropriate for phase volume fraction
theH’(m) curves specify the size of particle clusters in gen-When phase volumes are conserved, but cannot be used for
eral. This is evident by considering that particle clusteringan attrlbut_e such as length of interphase boundary per un_r_[
produces large- log p; values both byncreasingthe number qross—sectmn area. In such_ cases the set o_f gctue;l probabili-
of particles found in a box of sizexm over that number ties{P} found for a dynaml_c system at an initial time may
expected for a random configuration, and feglucingthe ~ SETV€ @S the sdp} at later times, with the caveat that most
number of particles found in other boxes of similar size else_mlcrostructural attributes are not conserved. More generally,

where in the system. Indeed, in the case 3, a box filled the information entropy may .be ca_tlculated as described
by a cluster has equal infor;nation vaIuez\;vith a box com-2Pove to detect features at various size scales in any collec-

A complex microstructure possesses distinctive features at
many length scales. Such “complexity,” which reflects the
Jange of length scales over which morphological features are

resent, is quantified by the information entropy functibn

pletely empty of particles. Figure 7 shows (m) curves for tion of data.

periodic configurations of particles in which the>X.Q0 unit

cell contains a single 22, 5X5, or 8X8 particle cluster, ACKNOWLEDGMENTS
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