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Information entropy of complex structures

Clinton DeW. Van Siclen*
Idaho National Engineering Laboratory, P. O. Box 1625, Idaho Falls, Idaho 83415

~Received 10 June 1997!

The information entropy function provides a sensitive measure of the complexity of a multi-component
material system, where ‘‘complexity’’ refers to the range of length scales over which morphological features
are present. This is demonstrated for an evolving, two-phase microstructure simulated by a population of
interacting particles on a two-dimensional surface. The information entropy increases at all length scales as the
initially random configuration of particles evolves to produce a distribution of ramified clusters. Maxima in the
normalizedinformation entropy function, which is obtained by subtracting the information entropy of a per-
fectly random configuration from that of the clustered configuration, occur at length scales for which the
system most differs from a random configuration, while minima occur at length scales for which the system is
periodic or relatively ordered. Besides analysis of complex microstructures, information entropy is useful in
detecting features present in any collection of data.@S1063-651X~97!04811-3#

PACS number~s!: 05.90.1m, 02.50.2r, 05.40.1j
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I. INTRODUCTION

The physical properties of materials are determined
marily by their microstructure. Quantitative characterizati
of the microstructure is thus essential both to correlate
crostructure attributes with observed properties, and to
dict properties through equations of motion, incorporat
such attributes, that describe physical phenomena of inte
@1#. In principle, a complete set ofn-point spatial correlation
functions can completely describe the microstructure@2#.
However, correlation functions beyondn52 are difficult to
calculate in practice, even for a digitized image of the m
crostructure. It is thus important to formulate alternative s
tistical descriptions of complex materials.

Beghdadi and co-workers@3,4# introduced the concept o
‘‘configurational entropy’’ as a morphological descriptor f
heterogeneous materials. This entropy, adapted from S
non’s information theory@5#, is a measure of the local fluc
tuations of some material attribute such as phase volu
fraction, over the system. Bogeret al. @6# developed the
similar ‘‘local porosity entropy’’ to find the length scaleL*
that maximizes the geometrical content~again, fluctuations!
of a system, in order to obtain an optimal local poros
distribution useful for calculating physical properties of
porous media. An exact relationship between these two
tropies was recently established by Andraudet al. @7#. A
more straightforward measure of phase volume fraction fl
tuations is given by the ‘‘coarseness’’C introduced by Lu
and Torquato@8#. This quantity is proportional to the stan
dard deviation of the local volume fraction, and is related
the two-point probability functionS2 .

The present work considers a more general ‘‘informat
entropy’’ H, so called because it corresponds to the aver
information content of the system. The distinctions betwe
the information entropy and the configurational or local p
rosity entropy are noted during the formulation ofH in Sec.
II.

*Electronic address: cvs@inel.gov
561063-651X/97/56~5!/5211~5!/$10.00
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The information entropy is then calculated for a mod
system consisting of interacting particles on a surface,
show that the functionH can uniquely characterize a syste
over all length scales. The physical significance of the
tropy function for this system is found by monitoring th
changes inH as the system evolves. Maxima and minima
the normalizedH ~obtained by subtracting the informatio
entropy for the random particle configuration! are shown to
correspond to clustering~of particles and of particle clusters!
and to periodicity or ordering, respectively.

II. INFORMATION ENTROPY

The application of information theory@5# to microstruc-
ture characterization is made by specifying that the inform
tion content of a particular volume or area found in the st
i is proportional to2 log pi , wherepi is the a priori prob-
ability of finding that volume or area in thei th state~or
configuration!. The states accessible to the system cor
spond to all possible values of a specified microscopic m
terial attribute, such as phase volume fraction or length
interphase boundary per unit cross-section area. The fu
tional dependence of information content on the state pr
ability derives from the fact that a sampled volume or a
that possesses an unusual value for a material attribute
veys more information about the microstructure than doe
sample that possesses the average value for the attribute
logarithmic function is necessary so that information cont
is additive: the information contentI (p1p2) of a system
comprised of two regions in states 1 and 2, respectiv
must equal the sumI (p1)1I (p2). The average value of the
information content~averaged over all volumes or area
comprising the system! is then the information entropyH for
the system, for the length scale given by the size of
sampled volumes or areas.

The information entropy differs from the configurationa
local porosity entropy mainly in the assignment of the pro
abilities p. For the latter,pi is theactualprobability of find-
ing a particular volume or area in the statei , so that the
system is completely examined prior to making the assi
5211 © 1997 The American Physical Society
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5212 56CLINTON DeW. Van SICLEN
ments.~Such prior knowledge provides ‘‘constraints’’@9# in-
corporated into the probabilities, so that the total informat
content of the system is reduced.! The configurational-loca
porosity entropy is thus sensitive tofluctuationsin the value
of the selected material attribute over the system, at
length scale given by the size of the volume or area use
determine the set of probabilities. In contrast, the inform
tion entropy is a measure of thedeviationof the value~or
distribution of values! of a material attribute from an initia
or expected value~or distribution of values!, on the length
scale corresponding to the volume or area size@10#. A more
sensitive measure is thenormalizedinformation entropyH8,
where the initial or expected information entropy is su
tracted from the information entropy calculated for the m
terial system.

III. APPLICATION TO AN EVOLVING TWO-PHASE
SYSTEM

To demonstrate the sensitivity of the information entro
to microstructure inhomogeneity,H(m) is calculated for a
simple two-dimensional, two-phase system, for all len
scalesm @11#. The system consists of a collection ofN par-
ticles ~each of size 131! initially placed randomly on a
square grid of side lengthL, that interact weakly to form an
irregular distribution of ramified clusters as shown in Fig.
The information content of am3m square region~or
‘‘box’’ ! within this system that is found to containn par-
ticles is2 log pn , wherepn is the probability of finding ex-
actlyn particles in thatm3m square region if theN particles
were instead distributed perfectly randomly over the syst
Thus the system ispresupposed~i.e., prior to examination! to
be in a random configuration, so that deviatio

FIG. 1. Snapshot of a population of interacting particles t
represents an evolving, two-phase microstructure. This 625-par
configuration on a 50350 grid produces the normalized informa
tion entropyH8(m) curve calculated at timet51000 in Fig. 4.
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from the random particle distribution represented by the
of probabilities$p%, that will occur as the system evolve
provide increased information content. The average valu
the information content, taken over allm3m regions com-
prising the system@which number (L2m11)2#, is the en-
tropy H(m).

The set$p% for the finite, random system is comprised
elements

pi~m!5S m2

i D S L22m2

N2 i D S L2

N D 21

5
~m2!!

i ! ~m22 i !!

~L22m2!!

~N2 i !! ~L22m22N1 i !!

N! ~L22N!!

~L2!!
,

~1!

where i runs from the larger of 0 andm22(L22N) to the
lesser ofN and m2. The information entropy for the finite
perfectly random, system is then

Hr~m!52(
i

pi~m!log@pi~m!#, ~2!

which is symmetric about its maximum atN5L2/2, for all
m, when plotted against particle numberN, since the set$p%
for the finite, random system with particle coveragef is
identical to the set for the complementary system with p
ticle coverage 12f. The entropyHr(m) is also symmetric
about its maximum atm25L2/2, for all N, when plotted
against sample box sizem2 @Eq. ~1! is unchanged under th
replacementm2↔N#, and equals zero atm5L since no
~new! information can be gained by sampling the system
that length scale~pN51 for m5L!. In each case, the maxi
mum in Hr(m) coincides with the maximum in the numbe
of states accessible to the system~i.e., the number of ele-
ments in$p% is maximal!.

The information entropyH(m) for a given configuration
of particles is then

H~m!52(
i

Pi~m!log@pi~m!#, ~3!

wherepi is taken from Eq.~1!, andPi is the actual probabil-
ity of finding exactlyi particles inany m3m region sampled
from the system. The set of probabilities$P% for box sizem2

corresponds to the local porosity distribution@6# when par-
ticle density is identified with porosity.

Figure 2 shows the information entropyH(m) for several
initial, ‘‘pseudorandom’’ configurations of 625 particles (f
5 1

4 ) obtained by placing the particles, one at a time, at r
dom positions on a 50350 grid, together withHr(m) for a
perfectly random configuration calculated from Eq.~2! @12#.
The deviation of the former curves from the latter reflects
finite size of the system in two ways:~a! the pseudorandom
particle configurations are themselves randomly chosen f
the set of all possible configurations of 625 particles on
50350 grid, so thatPi cannot be expected to equalpi for all
i ; and ~b! fewer m3m boxes are sampled as the box si
approaches the system size, so that deviations are gene
largest at largem. Note that for this reason, the informatio
entropy may not be a useful descriptor for length scales n
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56 5213INFORMATION ENTROPY OF COMPLEX STRUCTURES
that of the system size.~However, the problem of large de
viations at box sizes approaching the system size may
ameliorated by considering theL3L system to be infinitely
periodic rather than finite, so thatm3m boxes may effec-
tively ‘‘wrap around’’ the system edges.!

The effects of nonrandom particle distributions are m
obvious in the correspondingnormalized information en-
tropy H8(m)5H(m)2Hr(m) shown in Fig. 3. Values for
H8(m) greater ~less! than zero indicate length scales f
which particle clustering is more~less! prevalent than occurs
for a perfectly random particle configuration on a fin
space.

Ramified clusters are formed as the particles diffuse r
domly over the surface, due to a small binding energy
tween adjacent particles. This is effected by reducing
probability, from one to one-fifth, that a particle will move
an adjacent empty site when the particle has one or m

FIG. 2. Information entropyH(m) for several ‘‘pseudorandom’’
configurations of particles on a finite space. These curves dev
from the correspondingHr(m), shown as a dashed curve, for
perfectly random configuration on that space.

FIG. 3. Difference betweenH(m) andHr(m) in Fig. 2, plotted
as the normalized information entropyH8(m). The deviation of the
curves fromH8(m)50 is due to the imperfectly random initia
placement of the particles. Values greater than zero occur at le
scalesm for which particle clustering is greater than occurs for
perfectly random configuration, while values less than zero occu
length scales for which the particle distribution is more ordered
regular than occurs for a perfectly random configuration.
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neighbors~the binding energy is thus approximately 0.04 e
when the system is considered to be at room temperatu!.
The time t associated with the evolution of this system
expressed in Monte Carlo time steps, where one time ste
completed after every particle has had a single opportunit
move to an adjacent site.

Figure 4 presents a typical sequence ofH8(m) curves
calculated for the particle population att50,100,200,
...,1000. Cluster nucleation and growth is indicated by t
immediate rise inH8(m) at smallm and the subsequent shi
in the position of that first maximum to slightly largerm.
The additional maxima correspond to ‘‘clusters of cluster
present at larger length scales, that are seen to arise
nonrandom inhomogeneities in the initial distribution of pa
ticles. Consistent with this interpretation, Fig. 5 show
curves forH8(m) calculated att5100 for several initially
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FIG. 4. Typical sequence ofH8(m) curves calculated for a
population of interacting particles at timest50,100,200,...,1000.
Nucleation and growth of small clusters are indicated by the
crease in height and shift in position of the first maximum at len
scalem'5 over this time period. Larger-scale features are in
cated by the maxima at larger box sizes. The particle configura
at t51000 is shown in Fig. 1.

FIG. 5. Normalized information entropyH8(m) curves plotted
at time t5100, for several initially random configurations of pa
ticles ~those producing Figs. 2 and 3!. In every case, the first maxi
mum indicates small cluster formation, while the maxima at lar
box sizes indicate larger-scale features that arise from the im
fectly random initial placement of the particles.
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5214 56CLINTON DeW. Van SICLEN
random particle configurations~those producing Figs. 2 an
3! that have nearly identical first maxima~corresponding to
cluster formation! and very different additional maxima~cor-
responding to larger-scale features!.

The extreme sensitivity of the information entropy to m
crostructure features at all length scales is evident in Fig
which presentsH8(m) curves calculated for the particl
population ~producing Fig. 4! at t5105,23105,...,106.
These wildly varying curves are producedafter the system
has reached equilibrium, as indicated by an essentially c
stant ratio of successful particle jumps to attempted jum
over each 105 time interval.~As only free particles and par
ticles at a cluster periphery can perform jumps, their po
lations must be stable to produce a constant jump ratio.! This
variability would be reduced at larger system sizes~with
same particle coveragef! as a greater variety of cluster con
figurations could then coexist.

Despite the incontrovertible interpretation of the fir
maxima in Figs. 4 and 5 as indicative of small cluster fo
mation, it is incorrect to assume that the various maxima
theH8(m) curves specify the size of particle clusters in ge
eral. This is evident by considering that particle cluster
produces large2 log pi values both byincreasingthe number
of particles found in a box of sizem3m over that number
expected for a random configuration, and byreducing the
number of particles found in other boxes of similar size el
where in the system. Indeed, in the casef5 1

2 , a box filled
by a cluster has equal information value with a box co
pletely empty of particles. Figure 7 showsH8(m) curves for
periodic configurations of particles in which the 10310 unit
cell contains a single 232, 535, or 838 particle cluster,
respectively. The periodicity of the microstructure is giv
by the positions of the minima inH8(m), while the maxima
incorporate contributions from the regions devoid of p
ticles so their positions cannot be identified with a clus
size. The maxima instead occur at length scales at which
particle distribution most deviates from a random distrib

FIG. 6. Normalized information entropyH8(m) curves calcu-
lated for the particle population producing Fig. 4, at timet50 and
later timest5105,23105,...,106. Except for the curve calculate
for the initial, random configuration att50, all curves correspond
to equilibrium configurations of particles. No correlations ex
among the set of curves; for example, the curve for whichH8(39)
512 is obtained att573105.
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tion. Similar H8(m) curves are obtained for other partic
coverages and particle jump probabilities~leading to differ-
ent cluster sizes and shapes!, and for other system sizes.

IV. DISCUSSION

A complex microstructure possesses distinctive feature
many length scales. Such ‘‘complexity,’’ which reflects th
range of length scales over which morphological features
present, is quantified by the information entropy functionH.
This has been demonstrated for a system of interacting
ticles, whereH(m) increases as the initially random config
ration of particles evolves to produce complex structures

For application to real microstructures, it may be difficu
to determine the set ofa priori probabilities $p% that de-
scribes the expected distribution of values of a material
tribute ~for a continuous distribution, the set$p% is replaced
by the functionp!. A set of random probabilities like tha
used above may be appropriate for phase volume frac
when phase volumes are conserved, but cannot be use
an attribute such as length of interphase boundary per
cross-section area. In such cases the set of actual proba
ties $P% found for a dynamic system at an initial time ma
serve as the set$p% at later times, with the caveat that mo
microstructural attributes are not conserved. More genera
the information entropy may be calculated as describ
above to detect features at various size scales in any co
tion of data.
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t

FIG. 7. Normalized information entropyH8(m) curves calcu-
lated for periodic configurations of particles. Each of the three c
figurations has a 10310 unit cell within which is a single squar
cluster of 22, 52, or 82 particles, respectively; the correspondin
curves have first maximaH8(6)50.14, H8(5)51.39, andH8(5)
51.01. All three curves have minima at length scales coincid
with the periodicity of the particle configurations.
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